The Over-Relaxed A-Proximal Point Algorithm for General Nonlinear Mixed Set-Valued Inclusion Framework
نویسندگان
چکیده
The purpose of this paper is 1 a general nonlinear mixed set-valued inclusion framework for the over-relaxedA-proximal point algorithm based on the A, η -accretive mapping is introduced, and 2 it is applied to the approximation solvability of a general class of inclusions problems using the generalized resolvent operator technique due to Lan-Cho-Verma, and the convergence of iterative sequences generated by the algorithm is discussed in q-uniformly smooth Banach spaces. The results presented in the paper improve and extend some known results in the literature.
منابع مشابه
Super-Relaxed (η)-Proximal Point Algorithms, Relaxed (η)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
We glance at recent advances to the general theory of maximal set-valued monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed η proximal point algorithm to the context of solving a class of nonlinear variational inclusion problems, based on the notion ...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملAn Ishikawa-Hybrid Proximal Point Algorithm for Nonlinear Set-Valued Inclusions Problem Based on (A,)-Accretive Framework
A general nonlinear framework for an Ishikawa-hybrid proximal point algorithm using the notion of A, η -accretive is developed. Convergence analysis for the algorithm of solving a nonlinear set-valued inclusions problem and existence analysis of solution for the nonlinear set-valued inclusions problem are explored along with some results on the resolvent operator corresponding to A, η -accretiv...
متن کاملRelatively Relaxed Proximal Point Algorithms for Generalized Maximal Monotone Mappings and Douglas-Rachford Splitting Methods
The theory of maximal set-valued monotone mappings provide a powerful framework to the study of convex programming and variational inequalities. Based on the notion of relatively maximal relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing most of investigations on weak convergence using the proximal point algorithm in a r...
متن کاملHybrid Super-relaxed Proximal Point Algorithms and General Nonlinear Variational Inclusion Problems
First a general framework for a hybrid super-relaxed proximal point algorithm based on the notion of H-maximal monotonicity is introduced, and then the convergence analysis for solving a general class of nonlinear inclusion problems is explored. The framework developed in this communication is quite suitable to generalize first-order evolution equations based on the generalized nonlinear Yosida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011